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We obtain new fermionic sum representations for the Virasoro characters of the 
conformal field theory describing the ferromagnetic three-state Potts spin chain. 
These arise from the fermionic quasiparticle excitations derived from the Bethe 
equations for the eigenvalues of the Hamiltonian. In the conformal scaling limit, 
the Bethe equations provide a description of the spectrum in terms of one 
genuine quasiparticle and two "'ghost" excitations with a limited microscopic 
momentum range. This description is reflected in the structure of the character 
formulas, and suggests a connection with the integrable perturbation of 
dimensions (2/3, 2/3) + which breaks the $3 symmetry of the conformal field 
theory down to Z,. 

KEY WORDS: Three-state Ports; Bethe equations; conformal field theory; 
quasiparticles; alfine Lie algebras; Virasoro characters. 

1. INTRODUCTION 

The critical three-s tate  Pot t s  mode l  was found  to be in tegrable  over  20 years 
ago 11'2~ and  since these ini t ia l  inves t iga t ions  it has been the subject  of  
m a n y  studies. 131 Recent ly t4) it was shown  that  the o rde r -one  exci ta t ions  
of the an t i f e r romagne t i c  three-s tate  Pot ts  spin chain,  tS) c o m p u t e d  from 
the formal i sm of func t iona l  and  Bethe equa t ions ,  ~6-~2) can  be used to 
cons t ruc t  express ions  for the charac ters  of the confo rma l  field theory of 
Za-parafe rmions .  Since these equa t ions  yield exci ta t ions  which obey a 
fermionic  exclus ion rule, we call these fermionic  sum representa t ions .  These 
charac te r  formulas  were previously  ob ta ined  by Lepowsky  and  Pr imc  t~31 
from cons ide ra t ions  of the represen ta t ion  theory  of the affine Lie a lgebra  
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A] II. The characters,  which in this case are branching functions of 
(A]iI)4/U(1), are the building blocks of the modular  invariant  part i t ion 
function of the conformal  field theory. 

Here we provide a parallel discussion for the ferromagnetic chain, 
leading to fermionic sum representations for the Virasoro characters t~4~ of 
the Z3-parafermionic conformal  field theory which is associated with this 
model.C~5 ~7~ These representations, which we will now summarize,  are 
quite different from the ones of ref. 13. 

The normalized Virasoro characters fL~=--ql/30-AX,j of the Z3-para-  
fermionic conformal field theory, with central charge c = 4/5 and conformal  
dimensions 3 =A~.~.= [ ( 6 r - 5 s )  2 -  1]/120 ( r =  1, 2, 3,4, s =  1, 3, 5), are 
given by t~41 

1 ~ [qk(3Ok+6r--5S)--q(5k+r)(6k+s)l (1.1) 
Xa,.,(q) = Xa,-,.6-,(q) = (q)~ k = - 

Our  result here is that  these characters can be written in the form 

~a(q) = ~ q�88 1 
,,,,..,2,.,~=o (q).,, 

restrictions 

• [�89 + m3 + u2) l [�89 + u3)] 
/912 Jq L m3 q 

(1.2) 

where (q)o = 1, (q),,,=l-I"~'=t (1 _qa ) ,  the q-binomial coefficient is defined 
for integer m, n as 

I n ~(q)./(q) ..... (q)m if .>~m>.O 

mJq = [ 0  otherwise 
(1.3) 

m =  (m, ,  m2, m3), and C m is the Car tan  matrix of the Lie algebra A3: 

(21 i) 
C m = - 1 2 - 

0 - 1  

(1.4) 

The restrictions on the integers m~ in Eq. (1.2) depend on the character  
in question, and are such that  m~ are either even (e) or odd (o). These 
restrictions are listed, together with the u, and the linear translation terms 
L(m), in Table I. We note that  for characters other than Xo and ~3 there is 
more  than one representation of the form (1.2), and that  the formulas corre- 
sponding to lines (1)-(7),  (9), and (12}-(13) in the table are special cases of 
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Table I. Restrictions and Linear Translation Terms 
for the Characters Xa in Eq. (2)" 
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d mt m2 m3 u2 u3 L(m) 

(1) 0 e e e 0 0 0 

(2) 2/5 o e e 1 0 1 
(3) o o o 0 1 1 

(4) 7/5 e e o 1 0 3 
(5) e o e 0 1 3 

(6) 3 o e o 0 0 6 

(7) 1/15 o e o 2 0 m 2 
(8)  e e e 2 0 m2 
(9) e o o 1 1 m2 

(10) o o e 1 1 m, 
( I 1 )  {e  o o 1 - 1  m I - -m 3 

+ o  o e} 

(12) 2/3 e e o 1 0 m2--k 1 
(13) o e e 1 0 mz+  1 
(14) {e o e 0 - 1  r n l - m 3 + l  

-I-o o o} 

"Here  e~-even and o=-odd. Note that the characters ;(~/~5 and X2/3 have a two-term 
expression as well as one-term expressions. 

t h e  f e r m i o n i c  s u m  r e p r e s e n t a t i o n s  f o r  V i r a s o r o  c h a r a c t e r s  p r e s e n t e d  a l r e a d y  

in  ref. 18. 

T h e  m o d u l a r  i n v a r i a n t  p a r t i t i o n  f u n c t i o n  o f  t h e  c o n f o r m a l  f ie ld t h e o r y  

a s s o c i a t e d  w i t h  t h e  t h r e e - s t a t e  P o t t s  m o d e l  is w r i t t e n  in  a f a c t o r i z e d  f o r m  

in  t e r m s  o f  t h e s e  cha r ac t e r s ( ~7 ) :  

( q # ) - , / 3 o  2 = [Xo(q)  + 2(3(q)]  [2(0(#) + 2(3(#)]  

+ [2(2/5(q) + 2(7/5(q)] [2(2/5(#) + 2(7/5(#)] 

+ 22(,/15(q) 2(1/15(#) + 22(2/3(q) 2(2/3(#) (1 .5 )  

H e r e  t h e  v a r i a b l e  q ( = # )  is a s s o c i a t e d  w i t h  c o n t r i b u t i o n s  c o m i n g  f r o m  

r i g h t -  ( le f t - )  m o v i n g  e x c i t a t i o n s ,  as  d i s c u s s e d  i n  S e c t i o n  2. 

I n  t h i s  p a p e r  we  c o n s t r u c t  a d i r e c t  c o n n e c t i o n  b e t w e e n  t h e  l o w - l y i n g  

s p e c t r u m  o f  t h e  s p i n  c h a i n  H a m i l t o n i a n  a n d  t h e  c o n f o r m a l  f ie ld t h e o r y .  

W e  d o  so  b y  c o m p u t i n g  t h e  p a r t i t i o n  f u n c t i o n  o f  t h e  s p i n  c h a i n  in  a n  
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appropriate scaling limit [see (1.12) below], obtaining expressions of the 
form (1.2) for the Virasoro characters. Our starting point is the quasi- 
particle nature of the spectrum. 

A many-body system is said to have a quasiparticle spectrum if in 
the infinite-size limit the energy E and momentum P of the low-lying 
excitations above the ground state are of the form 

nla rtlei 

E - E c s =  ~ Z e~(P~), P - P o s  = Z ~ P~(mod2~) (1.6) 
ccru les  j ~  1 g, ru les  j =  1 

where m s is the number of excitations of type ~ in a given state. The rules 
of composition in (1.6) depend on the model in question, and commonly 
include a fermionic exclusion rule 

P ~ P ~  if j ~ k  (1.7) 

in which case the spectrum is said to be fermionic. 
There are many cases where the excitation spectrum is gapless, i.e., one 

or more of the e=(P ~) vanish at some value of the momentum, say at 
P= = 0, and 

e,(P~)~v~ IP=I for P : ~ 0  (1.8) 

where v, > 0 is the Fermi velocity of the excitation of type ~. 
The partition function of the quantum spin chain at temperature T is 

the sum over all states, 

Z =  ~ e-e/kBr=e -E~ ~. e -(E-E~s)/kBT (1.9) 
{ s t a t e s  } { s t a t e s  } 

and the specific heat in the thermodynamic limit is defined by 

C ( T ) = - T  o2f where f = - k B T  lira l l n z  (1.10) 
OT 2' M , ~_ M 

Here M is the size of the system and the temperature T has some fixed 
positive value. When the spectrum is of the form (1.8), at low temperature 
the specific heat is dominated by quasiparticle states (1.6) with vanishing 
single-particle energies and exhibits a linear T behavior. Therefore, in order 
to extract this behavior it is necessary to consider only excitations of 
this type in the sum over states (1.9). We refer to the resulting partition 
function, in the limit M ~  ~ and with the ground-state energy factored 
out, as the conformal partition function. More explicitly, the conformal 
field theory partition function (1.5) is obtained from 

2 = l ime EGs/kB TZ ( 1.11 ) 
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in the limit 

T--+0 and M-- ,oo,  with M T  fixed (1.12) 

Using (1.6) and (1.8), we see that Z" is a function of the variable 

( q = exp MkB T] (1.13) 

If there are no additional length scales in the problem, the q ~  1 
behavior of 2 and the T ~  0 limit of the partition function in the thermo- 
dynamic limit (1.10) should match. Indeed, the leading q ~ 1 behavior of 
Z, was computed in ref. 18 from the expression for the characters (1.2), 
where it was shown that the linear behavior of the specific heat obtained 
in this way is the same as that obtained in the thermodynamic limit at low 
temperature.~7'19 

We also remark that the connection between these two different com- 
putations goes beyond giving just the same final result for the value of the 
specific heat coefficient. In the analysis of the q ~  1 behavior of sums 
generalizing (1.2) for characters of a large class of conformal field theories, 
one encounters t~8~ the same equations (involving dilogarithms) which 
appear in thermodynamic Bethe Ansatz analyses of the corresponding spin 
chains, as well as of factorizable scattering theories that are associated with 
certain integrable perturbations of the conformal field theory in question. 
We will say more about the relation between fermionic character sums and 
integrable perturbations in Section 5. 

In ref. 4 it was shown for the antiferromagnetic three-state Ports chain 
that the sum over low-lying excitations with a massless dispersion relation 
(1.8) gives rise to the D4 (ref. 20) modular-invariant partition functions of 
the Z4-parafermionic conformal field theory. In that model there are three 
different excitations, all having the same linear dispersion relation. In 
contrast, the spectrum of the ferromagnetic three-state Potts chain has a 
different structure. While there is only one type of quasiparticle excitation 
of the kind found for the antiferromagnetic case, tS~ there are two more 
excitations, which do not contribute to the energies at order one ( = M ~  
but rather determine the degeneracy of states of the order-one excitation 
spectrum, c21~ thus affecting the thermodynamics through entropy considera- 
tions. In the calculation of the partition function, where we take the energy 
of all excitations to have a linear dispersion relation, this can be viewed as 
a statement that the momentum range of these latter two excitations is 
microscopic (of order M - I ) ,  instead of being macroscopic (order M ~ as 
it is for the quasiparticle excitation. 

In Section 2 we define the model and introduce the relevant Bethe 
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equations, as well as the order-one spectrum. In Section 3 we use the 
finite-size studies of refs. 21 and 22 to extend the order-one analysis of the 
spectrum {5~ to order l /M,  and study the sectors of the partition function 
which give rise to the representations (1), (2), (4), and (6) in Table I for 
the characters Xo, X3, X2/~, and X7/5. The sector of the partition function 
which corresponds to the character ;~l/15 is analyzed in Section 4. This gives 
a representation for Xm5 in terms of five sums of the form (1.2). In 
Section 5 we contrast the form (1.2) with the result of ref. 13 and discuss 
the relation of these different fermionic representations for the conformal 
field theory characters to certain integrable massive extensions. 

2. THE GAPLESS THREE-STATE POTTS CHAIN 

The gapless three-state Potts quantum spin chain of M sites with 
periodic boundary conditions is defined by the Hamiltonian 

2 M 
z =  , x )  + + (2.1) 

where ZM+I = Z I  and for j =  1 ..... M the matrices Xj and Zj  are written as 
a direct product of M 3 x 3 matrices: 

X j = I | 1 7 4  . . .  | 1 7 4  . . .  |  Z j = I | 1 7 4  . . .  | 1 7 4  . . .  |  (2.2) 
jth jib 

Here I is the identity matrix and ( 00) 
X = 0 , Z = o9 0 , o9 = e 2'~i/3 (2.3) 

1 0 o92 

The Hamiltonian with the ( + ) -  sign is referred to as the (anti-) ferro- 
magnetic spin chain. The Hamiltonian has a Z3 spin-rotation invariance 
and thus the Z 3 charges Q = 0, ___ 1 are good quantum numbers. In addi- 
tion, (2.1) is invariant under complex conjugation and hence the sectors 
Q = +__ 1 have equal eigenvalues and in Q = 0 the eigenvalue C = + 1 of the 
charge conjugation operator is a good quantum number. 

The Hamiltonian (2.1) is derived from the two-dimensional critical 
three-state Potts model of classical statistical mechanics. The eigenvalues of 
the transfer matrix of the latter model satisfy functional equations {~l~ 
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which, when specialized to the Hamiltonian point, t2~) yield equations for 
the eigenvalues of the Hamiltonian. These eigenvalues are given by 

E = s = ,  cot i ) v+ -~  x / / -~ ,  L=2(M-IQI) ,  Q = 0 ,  +1 (2.4) 

where the rapidities 2j satisfy a set of equations of the form of Bethe 
equations: 

[ sinh(irc/12 - )v)] T M  

= ( - - 1 )  M+! I~I sinh[irt /3--(2i--) 'k)]  
k=, s inh[ in/3+ (2j-- 2k)] '  j =  1 ..... L (2.5) 

The corresponding momentum, which is defined as the eigenvalue of the 
translation operator, is given by 

s inh(2k-  iM12) 
e i P  = 

kll= ~ sinh(2k + in~12) (2.6) 

The solutions of the Bethe equations are sets of (possibly complex) 
roots {2j}, and in the large-lattice limit each root belongs to one of five 
different classes, c2~ the roots in each class having a fixed value of the 
imaginary part of 2j, 3 

x7 re/2 1 
).j iscalled 2jz.ls if 3m(2j )=  _+~/67 (2.7) 

x~.:j _+,~/3 / 
+ ~/4 J 

The last three classes of roots occur in complex conjugate pairs, and are 
referred to as complex pairs. We define m~ (where ct = +, - ,  2s, - 2 s ,  ns) 
to be the number of roots in each class, complex pairs being counted once. 
A detailed analysis of Eqs. (2.5) was performed in ref. 21. We summarize 
those results of that paper which we will use here in the Appendix. 

The order-one excitation spectrum obtained from (2.4)-(2.5) in the 
limit M--. oo was found in ref. 5. It was shown there that for the ferro- 

3 Note that the definition of 2 here has a factor of -I/2 relative to the definition in ref. 21. 
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magnetic case, the order-one energy gaps can all be written in the quasi- 
particle form 

m +  

E - E o s =  ~ e + ( P f )  (2.8) 
] = l  

where m +  = 2m,,s + 3 m _  + 4m 2, and the single-particle energy is 

e+(Pf)=6sin(IP~-1/2), O<<.ef <<.2rt (2.9) 

so that the Fermi velocity is v = 3. The momentum of a single-particle state 
is expressed in terms of its rapidity 2 + as 

P ( 2 + ) - n + 4 t a n - l ( t a n h 3 2  + ) (mod2n)  (2.10) 

The number of states characterized by the same set { P f  } [and thus 
by the corresponding set of single-particle energies {e+(Pj+)}] is, in the 
sector Q = 0,121J 

m_ +m_~s](2m_ + 2rn_2s + m,,s) (2.11) 
m_ 2, / \  runs 

where (~) is the binomial coefficient. This stems from the fact that the other 
excitations (ns , -2s)  carry no energy, yet states differing only in their 
content of {27} .... . .  -2, have to be counted individually. 

In order to construct the scaled partition function (1.11) of the model, 
we extend the order-one spectrum to momenta near zero. At such 
momenta, the energy is 

~vP + for P+ --,0 
e+(P+)=(v(2r t -P+) for P + ~ 2 n  (2.12) 

Note that there are no absolute value signs, and the momentum is no 
longer defined mod 2~. This amounts to extending the order-one result 
(2.9) tO order l/M; however, at this order we must consider two additional 
contributions to the energy: 

1. To order one, the excitations ns and - 2 s  contribute zero energy. 
However, to order 1/M they may carry energy, and indeed we find 
that e~(P ~) = vP ~ for ot=ns, - 2 s ,  but with P~ restricted to only a 
microscopic range, of order 1/M. Here v is the same as in 
Eq. (2.12). 



Critical Ferromagnetic 3-State Potts Mode l  247 

2. Constant (independent of momentum or the number of excitations) 
contributions of order 1/M to the energy must be accounted for. 
These contributions, which give the conformal dimensions zl ..... 
have been computed from functional equations for the transfer 
matrix by Kliimper and Pearce. Iz2~ 

From Eq. (2.6) and Eqs. (A.18), (A.23), and (A.26) of the Appendix, 
we see that the total momentum of any state can be written as 

5 - -  2s ns If  + Ij + ~, 15 +L(m,) (2.13) 
M l j=l j=l 

where L(m~) is some linear shift which depends on the sector under con- 
sideration. In Eq. (2.12) the energy depends linearly on the P~, which are 
quantized in units of 2n/M and are directly related to the (half-) integers 
of the logarithmic Bethe equations (A.1) as 

2rti~ - _ a r t / +  p72,=2rt -2. , .  p,~.=2__~i,~.,. (2.14) 
U = M '  + r t = M  J'  ' ' M '  

The energy can thus be expressed in terms of the 17 . 
The spectrum (and so the partition function) splits into different 

sectors of definite Z 3 charge Q = 0, _ 1, and furthermore the sector Q = 0 
splits into subsectors of parity number C= _1, corresponding to m_ 
being even (C = 1) or odd (C = - 1  ). Hence we can discuss separately each 
sector, which give rise to different characters, as in the antiferromagnetic 
case. (4) 

3. THE C H A R A C T E R S  IN THE SECTOR Q = 0  

The (half-) integers in this sector are chosen from the ranges 
(A.8)-(A.9), and hence we see from (2.14) that the P~ are chosen from the 
ranges of spacing 2n/M with the following limits: 

2n [1 (m- +m-2.,-- l)] 

<~Pf <~2n+~[~(m_ +m_2,- l )]  (3.1) 

2hi-1 _ 1)] 

<~P7 ,,~ML 2 ( m _ + m _ z , - 1 )  (3.2) 

82274 1-2-17 
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1 M 2 (2m-+2m-2s+m''- l)  

<~P~'~-~ (2m +2m_2,+m,,,-1) (3.3) 

As is the case for the excitations of the antiferromagnetic chain, (4) the range 
of single-particle momenta for the "+"excitations is macroscopic: it is of 
order 2rt for any finite rn~ in the limit M--* oo. In contrast, the ranges for 
P~:" and pf2, are of order I/M and allow only a finite number of states in 
the limit M ~ o o ,  for given m~. We refer to excitations with such 
microscopic momentum ranges as "ghost" excitations. 

One expects that the partition function factorizes into right- and 
left-moving contributions, as in the antiferromagnetic case, so that the 
characters of the model are obtained by considering these contributions 
separately. However, in the ferromagnetic case only the P f  can be con- 
sidered to be right- or left-moving, where right- (left-) movers indicates 
Pf ~0 (P; ~ 27t). 

When taking the limit M--* oo, right- (left-) movers can be considered 
to lie on a semi-infinite range, since the range for P+ is macroscopic, 
allowing for an infinite number of momentum states. Therefore, we rewrite 
the momentum range for right-movers in this limit as 

2rt FI 1 ~ L ~ ( r n _  + m _ 2 , , - 1 )  ~<Pf <oo forright-movers (3.4) 

replacing Eq. (3.1). For the left-movers it is convenient to replace P+ by 
P + - 2 n ,  so that the momentum range in the M-~ oo limit is 

2rt [-1 ] -oo<PT<<.~L~(m_+m_z,-1) for left-movers (3.5) 

and the dispersion relation (2.12) now reads 

~vP + for right-movers (3.6) 
e+(P+ )=  / -vP + for left-movers 

There are four characters corresponding to the Q = 0 sector (since 
there is a symmetry between right- and left-movers, below we restrict our 
attention to the right-movers): 

1. The vacuum character )~o, which corresponds to the sector of the 
partition function with only right-movers and positive parity, 
C = + I .  

2. The character )?3, which corresponds to the sector with only 
right-movers and negative parity, C = - I .  
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3. The character X2/5, which has one left-mover and the rest 
right-movers, with C = + 1. 

4. ~'7/5, which has only one left-mover and C =  -1 .  

We will discuss in detail the construction of the partition function in the 
sector corresponding to Xo, item 1 above, and then outline the computation 
of the other characters. 

3.1. Cons t ruc t ion  of  the  Charac te r  Xo 

The sector of the partition function (1.9) which has only right-movers 
and Q = 0, C = + 1 is computed as follows. The excitation energy is simply 
the sum over the individual excitations near P ' ~  0, 

m + r t z  _ 2s  m~  

The partition function is the sum over all right-moving excitations with 
momentum ranges (3.2)-(3.4), subject to the fermionic exclusion rule (1.7), 
and the restriction that m_ be even. In Table II we show the lowest energy 
states in this sector. The general expression for the partition function in this 
sector is 

20 = ~ e - , , e / k ~ r =  ~ q~Y_,,; +Z,l/'-'+X/(~ (3.8) 
{s ta tes}  { ~ }  

with q defined as in Eq. (1.13). Here the 17 are restricted as in Eq. (A.8) in 
the Appendix with m_ even. As in (3.4), in the limit M--* oo we have for 
right-moving " +  "-excitations 

- � 8 9  -t-m_2s-- 1)~<i + < ~ (3.9) 

The restrictions on the integers are implemented by using two integer 
partitions, Q , , , ( N ; n )  and Q,,,(  N )  - Q , , (  N ;  ~ ), where Q , , ( N ; n )  is the 
number of partitions of N/> 0 into m distinct nonnegative integers each less 
than or equal to n. The partition function (3.8) subject to the restrictions 
(3.4). (3.2), (3.3) then becomes 

f f ' 2 0  = Q , , §  + ) qN+ - ~,,,+l,,,-~+ . . . . .  I I 

m -  . m  - 2s, r/Ins = O N + . N _ z~. N n s  = O 

m _  e v e n  

m + = 2runs + 3 m _  + 4 m _  2s 

1 
• Q , , , _ , ( N _  2s ; m _ 2.,. + m _ - 1 ) qU_,_,- ~,,,-~c,,-z~ + m_ - i i 

1 
N n s - - ' S m n s (  . . . .  + . . . . .  ~ + 2  . . . . .  [) (3.10) •  z , + 2 m  - 1 ) q  - 
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The exponents of q above are essentially the total momenta of each type of 
excitation, i.e., the sums over the integers N~ = ~ j  I~. The partitions count 
the number of times qr ,  N, occurs in the partition function, which is the 
number of ways N~ can be divided between m, fermionic excitations. 

The sum (3.10) can be reexpressed using the identity ~23'24~ 

Q,,,(N;n)qN=q"~"-~/2In+l ] (3.11) 
N ~ 0 IT /  q 

which, when n --* ~ ,  reduces to 

Q,,,(N) qu_q ' ' l '-  'l/'- 
Jv=o (q),,, 

Using these identities, (3.10) becomes 

J ~ 0  = q 
m _  , m - 2 , 1 ,  ,vlm~ = 0 

m §  = 2 r u n s  + 3 : t z  _ + 4 m  _ ~ 

I t 1 _  e v e n  

/ I q~"* I , , ,  + - 1 ) + 5 r n  _ 2s( m _ ~ - 1 ) + T m n s (  m m - 1 ) 

1 Fm_2,.+m 3 [m,,s+2m_,_s+2m_] 
x (q),,-----~ L m_2, q rn,ls q 

(3.12) 

_ 1 ( m + + m_  ~ ) (  m _ 2s + m _ - -  1 ) - -  ~n  ns (  r uns  + 2m _ 2s + 2m _ - -  1 ) 

(3.13) 

The form of the sum may be further simplified by changing variables to 

m I = m + ,  m2 = 2m_ + 2m_2s, rn3=rn_ (3.14) 

which results in the expression (1.2) with the restriction that all m,  are even 
and L ( m ) = 0 ,  u,=O. This is the expression listed on line (1) of Table I. 

This expression is quite different in form from the one given in (1.1). 
Nevertheless we find that 

Z o = ~ o  (3.15) 

This has been verified as an equality between the series expansions of the 
two expressions to order q2OO, using Mathematica. 

3.2. Const ruct ion  of ~(z 

In Table III we present the lowest energy states of the sector C = - 1 ,  
where all m § are right-movers. The calculation of the partition function 23 
is identical to that of the last section, except that now m_ is odd in Eqs. 
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(3.10) and (3.13). Using series expansions, we verify that the resulting 
expression 23 is equal to  q3~3 to  order q2OO. With the change of variables 
(3.14), this results in the expression on line (6) of Table I. 

3,3. Const ruc t ion  of  32/5 and )(7/s 

The characters ~2/5 and ;~7/5 occur when one of the m+ is a left-mover, 
and all the rest are right-movers. This amounts to setting m+ = 2m,,s+ 
3m_ + 4 m _ 2 s -  1 in the partition sum (3.10) and (3.13). Also, there is an 
additive term to the momentum of the form (Tzv/M)(m_ + m,., .-  1), which 
is the lowest energy state of the single left-moving "+"-excitation allowed 
by Eq. (3.5). The character ;~2/5 occurs for C =  +1, i.e., m_ even, and the 
character X7/5 occurs for C =  -1 ,  m odd. We tabulate the lowest energy 
states for these two sectors in Tables IV and V. The expression for the 
resulting partition functions is 

22/5,7/5,= ~ ~ q�89 .... z , - , ,  
n l  + ,  r n  _ 2 s ,  e n d ,  = 0 N ~  = 0 

m + = 2 r u n s  + 3 m _  + 4 m _  2s - -  1 

m- e v e n  ( o d d )  

• . . . .  1~ 
1 

x Q, ,_ , (N ~; m_2s + m _ - 1 ) qN_~- ff,,,-zd-,-~ + . . . .  1) 

Nns  - -  Irons(runs  + 2 m  _ 2s + 2 m _  --  1 ) 
x Q,,,.,(N,,s; m,,~. + 2m_2~+ 2 m  - 1) q 

(3.16) 

Using the identities (3.11)-(3.12) and the change of variables (3.14), we 
bring 22/s and q-~27/5 to the form (1.2) with the restrictions listed on lines 
(2) and (4) of Table I, i.e., we find that 

22/5 = X2/5, 27/5 = qXT/5 (3.17) 

The other expressions for the two characters X2/5 and X7/5, corresponding 
to lines (3) and (5) of that table, are conjectured forms. Using a power 
series expansion, we showed that all these forms are equal to the 
corresponding expressions (1.1) for X2/5 and X7/5, to order q2OO. 

4. T H E  S E C T O R  Q = I  

The analysis of this sector is more involved than for the Q = 0 sector, 
since (see Appendix) there are five different subsectors to be considered, 
where the integers range over different intervals. Each of these subsectors 
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gives rise to a separate sum in the sector of the parti t ion function 
corresponding to r ight-moving excitations. The resulting five sums add 
together to form the Virasoro character  ;~1/~5, as we now describe in more 
detail. 

The momen tum ranges are given by the integer ranges (A.8) and 
(A.10)-(A.14) in the Appendix, and the relations (A.18), (A.23), and (A.26) 
of the total momen tum to the integers. We will present the computa t ion  for 
each subsector separately, where for each subsector all "+"-exc i ta t ions  are 
right-movers. 

1. m _ - r n + +  = +1:  Here we see from Eq. (A.6) that m§ = 2 m , , , +  
3m_ + 4 m _ 2 s - 2 ,  and the lowest energy states are shown in Table VI, 
where the integer range is that  of Eq. (A.10). The part i t ion sum starts with 
m _ = l ,  s i n c e m _ > m + + > t 0 :  

1 1 +  ~ m + 1 3 - m _  - . l _ z , )  7~ ( ] ) q~,,,+ ~,, § - l 
1/15 ~--- 

. . . .  l . . . . . . .  ~=o (q),.+ 
m+ ~ 2mn.~ + 3 m  _ + 4 m  - 2s - -  2 

r ] X q 2m-I . . . . .  ~ ( m  ..~ I ) + ~ m _ 5 | 3 - m _ - m _ ~ )  m _ 2 s - F m _  - 2  

L m _ 2 s  u 

I �89 . . . . .  Z . ,  ~ _ . , ~ , , [ m , , . , + 2 m  ,.+2m --2] x q ~ - ' ' ( " "  - 1 ) + _ _ _ 

m n s  q 

(4.1) 

2. m - m + + = - 1 :  F rom the sum rule (A.6) we see that m+ = 
2 m , , s + 3 m _ + 4 m  2 . , + 2 ,  and the integer range is given by (A.I1). The 
lowest energy states are shown in Table VII,  and the general expression for 
the parti t ion function is 

2121 = ~ q � 8 9  . . . . . . . .  ~ 1 
1/15 

. . . . . . . . . . .  ~=o (q) .... 
/...a 

m + = 2runs + 3 m  - + 4 m  _ ,._~ + 2 

1 � 89  . . . . .  ,)Frn-2.,.+ml X q ~ m _ z ~ i m  z * -  l ) + - m _  

" rn - z ,  q 

1 x q~ ' "~ ( "  ~' - 1 ) + ~,,,,,( - 1 - -  2 m  _ - -  2m 2s rnm ) 

•  2m_2s + 2m_ + 2]  (4.2) 
L m ,,s q 

3. m_ = m + +  = 0 :  Since m = 0 ,  there are no - 2 s  excitations. The 
relevant m o m e n t u m  range is obtained from the integer range (A.12), and 
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the lowest energy states are listed in Table VIII.  The general expression for 
the par t i t ion  function is a simple sum over ns excitations,  with m+ = 2m,,,: 

~3~ ~ q,t,+~ +1~/._ ~ 
~ | / 1 5 =  (q) .... (q) ...... 

mrs = 0 m n s  = 0 

n l  + = 2runs 

(4.3) 

4. m _  = m + + 4: 0: There are two subsectors with this characterist ic,  
cor responding  to the integer ranges (A. 13) and (A.14). These integer ranges 
are asymmetr ic ,  so there is a shift term in the total  momentum,  as shown 
in (A.23) and (A.26), of the form T-(2rcv/M)(�89 +m_z~).  F o r  both 
of these sectors m+ = 2m,,, + 3m_ + 4m_2~. The lowest energy states are 
listed in Tables  IX and X. The sums take the forms, for the integer range 
(A.13), 

2~4~ ~" ~. q - ( "  - + .... ~ + ~,,,.~) 
1/15 

m _  = 1 t t lns, t t 1 -2s  ~ 0 

m +  = 2runs  + 3 m  _ + 4 m  _ z~ 

xq{.,+c.,+-l~+�89 . . . . . . . . .  ~1 1 
(q).,+ 

r ] q�89 - i ) + 5 m _  ~ (  | - m - m _  2s) O l  _ 2 s  - ] -  m _ 
x - - 

L m _ ,,. q 

x q�89 .... --l)+�89 . . . .  2m_~ ...... I[mt�93 + 2 m - ]  (4.4) 

/Tins q 

and for the integer range (A.14) 

2(5)1/15 ---- ~ ~,, q(  .... + .... 2s + lmns) 

m _  = 1 ran ,  n l _ 2 x = O  

m + = 2runs  + 3 m  + 4 m  _ ~ 

q�89 . . . .  - l)+lm+(l . . . . . . . . . .  ~,)  1 )< 
( q )  .... 

X q�89 -z,O, _ 5 - ,  1 + g,,_zd3 . . . . . . . . . .  ~ , [ m - 2 , + m - ]  
k m / 

- 2s Aq 

l  .,22 ..... ..... ,[mn +am2 +2m]  q~.,.,~ ..... - l ~ + 
• 4.5) 

r u n s  
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Finally, we find that 

5 

Z 2]';15=f~,/,5 (4.6) 
a = l  

This is a five-sum expression for the character ~/15, where each summand 
can be expressed in the form (1.2). In addition to this form, one can find 
the forms listed in Table I for the character ~/~5. Again, although all these 
forms are quite different from that of (1.1), they have been shown to be 
equal to order qZOO. 

It remains to consider the character ~z/3. Here, however, no analysis 
corresponding to the above five-term sum form is availible. The conjec- 
tured forms on lines (12)-(14) of Table I have been verified to order qZOO. 

5. D I S C U S S I O N  

The forms of the expressions (1.1) and (1.2) for the characters of the 
ferromagnetic three-state Potts conformal field theory deserve to be called 
"different," even though the expressions are equal. The question thus arises 
as to what is meant by the word different, how many different forms there 
are, and what their significance is. We know of at least four different forms 
for the characters of the three-state Potts. One is the Rocha-Caridi form 
(1.1), the second is the form of Kac and Peterson t25) and Jimbo and 
Miwa, t26) the third is that of Lepowsky and Primc, 113) and the fourth is the 
form (1.2). Each of these forms is sufficiently different to warrant a separate 
discussion. 

1. The expression (1.1) for the Virasoro characters, which are t271 
branching functions of the coset (All~))3 x (A~I~)ff(A~J))4, is what we refer to 
as a bosonic sum representation. This stems from the presence of the factor 
(q)~l, which represents a bosonic partition function and can be understood 
in terms of the Feigin-Fuchs-Felder construction t28'29~ of the Virasoro 
minimal series t3~ J//(p, p ' )  to which the three-state Potts conformal field 
theory belongs, being ,~//(5, 6) in this notation. 

2. The second form is also a bosonic expression which can be 
obtained by viewing this conformal field theory as that of Z3-para- 
fermions, 1~6~ where the characters of the corresponding Z3-parafermionic 
algebra are 12~ the branching functions of the coset (A~I))3/U(1). Another 
description of the same conformal field theory is as a minimal model with 
respect to the W 3 algebra, 1311 where the corresponding coset construction 
is (A~zl~), • (A~ '~ I1) )ff(A2 )2. The latter construction is related by level-rank 
duality 132~ to (A ~j~ J)3/U( 1 ), and the branching functions are in fact the same. 
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They are given by the Hecke indefinite forms of (25'z61 (or alternative but 
very similar sum representations of (33)) 

qJ/3~ t ~ - -  qht" [(~>~ ~ ~< ) 
(q)  . . . . .  >~o ~ < o .  o 
x ( -  1 )s q.~<s+ t ) /2+ .+  ~),,+(t+.,)s/z+5(,,+s~,, 

+(z z - z  
s > 0  n > ~ 0  s < 0  n 0 

x ( _ l ) , q S l + + l V 2 + ~ : + l l , , + l t  . . . .  )s/2 + 50,+s~,] (5.1) 

where the hl, , are 

h l . _ 1 ( 1 + 2 )  m 2 
20 1--2- (5.2) 

Here l = 0, 1, 2, l - m  is even, and the formulas are valid for Iml ~< 1, while 
for ]ml > / one uses the symmetries 

- -  1 - -  3 - /  b / . , = b t _ , , , - b . , + 6 - b 3  .. . .  (5.3) 

The parti t ion function (1.5) is expressed as a diagonal bilinear form in 
terms of the b/ro, through 

XO 71"- ~.3 : b~ X2/5 + X 7 / 5  : b o  2 , Xl/15 = b2, X2,3 = b ~ (5.4) 

Note  that two of the bl, , split into a sum of a pair of Virasoro characters,  
corresponding to a more  refined splitting of the spectrum of the Hamil-  
tonian into various sectors. Also, the expressions (1.1) have only one factor 
of (q)Ll,  while the ones in (5.1) have two. Thus, whereas (1.1) can be said 
to be based on one boson, (5.1) is based on two bosons. 

3. The third form is a fermionic sum representation for the branching 
functions b~,, which was obtained by Lepowsky and Primc~t3~: 

qmC~21m' + l-t{m) 
qt/3Obt (,.,) qt12-t)/16 ~_, z e - /  ~ = (5.5) 

, , , t . , , ,2  = o (q),,,i (q),,,2 
m l  - m2  ----- Q [ r o o d  3 )  

where 
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is the Cartan matrix of the Lie algebra A,_, and Lo(m)=0,  Ll(m) = 
(2m~ + m2)/3, L2(m)= (ml + 2m2)/3. This expression can be interpreted 1341 
in terms of two C-conjugate fermionic quasiparticles carrying Z3 charges 
_+ 1, both having macroscopic momentum ranges. For example, for l =  0 
these ranges are 

l(ml )] 
M 2 + 2  3 2m2 <~P) <oo, 21r [-1 1 ( 2 m l ;  "~ [ ~ + ~  m2)]  

~<P)<oo 

(5.6) 

where the P~ ( j =  1 ..... m=) are chosen from a grid with spacing 2rt/M. 

4. The fourth form is the fermionic sum representation (1.2), which 
has one genuine quasiparticle with a macroscopic momentum range and 
two "ghost" quasiparticles, whose momenta are limited to a microscopic 
range, e.g., Eqs. (3.1)-(3.3). 

The existence of different fermionic sum representations for characters 
is closely related to the fact that one conformal field theory may have 
several integrable perturbations, characterized by the conformal dimen- 
sions (,4, 3)  of certain perturbing relevant operators. In ref. 34 this observa- 
tion was made in connection with the representations of the critical Ising 
characters as related to either ( i ) the  coset (A]~))~ x (A]l))l/(A]l))2 , where 
the character formulas are written in terms of a single quasiparticle and the 
associated perturbation is by the (1/2, 1/2) operator, or ( i i) the coset 
(E~st))) x (E~sJ))~/(E~))2, which has eight quasiparticles and is associated 
with the (1/16, 1/16) perturbation. (35) In each case the perturbation can be 
thought of as giving masses to the fermionic quasiparticles. 

A similar discussion can be given for the two different fermionic 
representations (5.5) and (1.2) of the critical three-state Potts model. 
Consider first (5.5), which was interpreted as having two fermionic quasi- 
particles of Z 3 charge _+1. This is to be compared with the (2/5, 2/5) 
S3-symmetric perturbation of the three-state Potts conformal field theory, 
which was argued in ref. 36 to be integrable and to have a spectrum which 
consists of a Z3-doublet of massive particles, whose scattering is described 
by the factorizible S-matrix found in ref. 37. Here the perturbation can 
again be thought of as giving mass to the two fermionic quasiparticles. This 
perturbation is also to be compared with the massive r = 5 RSOS model 
(or hard squares with diagonal interactions), (38) whose spectrum on the 
lattice (6) in regime II consists of two excitations with Z3 charge _+ I. 

In the same spirit it is natural to associate the fermionic sum represen- 
tation (1.2) with the C-even (2/3,2/3) + perturbation: This subleading 
magnetic perturbation breaks the $3 symmetry down to Z 2. The related 
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statistical mechanics system is the N = 3 model of Kashiwara and Miwa 139J 
(also given as the D4 model of Pasquier, 14~ obtained from the r = 6 RSOS 
model of Andrews et aL ~4~ by an orbifold construction142~). In the notation 
of refs. 40 and 41 the lattice models are to be considered in the regimes 
Ill-IV. The perturbed conformal field theory is the p =  5 case of the 
(A l. 3, A~.3)-perturbed minimal models ,tO(p, p +  1), which have been dis- 
cussed in refs. 35 and 43-52, where it is seen that the sign of the coupling 
to the perturbing operator leads to qualitatively very different effects. 

In the case of negative coupling constant (using the conventions of 
ref. 35) the perturbed theory becomes massive. This is to be compared to 
the massive regime III of the models of refs. 39--41, where excitation 
energies have been computed in ref. 53. We interpret this direction of the 
perturbation as giving mass to the quasiparticle m~ of (1.2). 

The more interesting case is the one where the coupling constant is 
positive. Now the integrable perturbed conformal field theory remains 
massless, t35'48~ even though scale invariance is broken, and flows (49'51'52'54) 

from the three-state Potts conformal field theory of central charge 4/5 to 
the conformal field theory of the tricritical Ising model of central charge 
7/10. This suggests an interpretation in terms of the representation (1.2), 
where we note that under the restriction to the sector where there are no 
"ghost" excitations of type m 3 the fermionic representations for the three- 
state Potts characters reduce to fermionic representations t~8~ for the charac- 
ters of the tricritical lsing model. Specifically, restricting the summation in 
(1.2) by setting / / 1 3 = 0  , w e  find that the formulas corresponding to lines 
(1), (2), (5), (8), (10), and (13) of Table I reduce to expressions for the 
c = 7/10 Virasoro characters ~,j with A = 0, 7/16, 3/2, 3/80, 1/10, and 3/5, 
respectively. The crucial point making this possible is the fact that (four 
times) the quadratic form in the fermionic sum representations of the 
c---7/10 characters is the Cartan matrix of A 2, which is precisely the minor, 
obtained by omitting the last row and column, of the quadratic form CA3 
in (1.2). More generally, we find from ref. 18 that the fermionic form of 
the characters of the unitary minimal model ,# (p ,  p + 1) with one quasi- 
particle and p - 3  "ghosts" reduces to character formulas for J g ( p -  1, p) 
when the last ghost is omitted, the corresponding massless flows being the 
ones discussed in refs. 43, 44, and 48. 

APPENDIX. LOGARITHMIC BETHE EQUATIONS 

We recall here some results t2tl concerning the classification of the 
solutions of the Bethe equations corresponding to the eigenvalues of the 
Hamiltonian (2.1). 
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Not  all the roots 27 [cf. Eq. (2.7)] in a given solution of the Bethe 
equations (2.5) are independent of one another, and in order to discuss the 
relations between them we introduce the logarithmic Bethe equations. By 
taking the logarithm of the Bethe equations (2.5), we can classify the sets 
{2; } more easily. Doing this introduces integers or half-integers associated 
with the choice of branch of the logarithm. The equations for the complex 
pairs are first multiplied together. After taking the logarithm, we obtain five 
sets of equations, one for each class of roots, referred to as the logarithmic 
Bethe equations: 

2n 1 ,,,1+ 

f l =  + _ , •  n s  k = l  

~ { + ,  - ,  2s, - 2 s ,  n s}  (A.l)  

where f ,  = 2 for ~ = ns and is 1 otherwise 4 and where the functions O,t~ and 
t, are defined as follows. Let s,(2) = sinh(i~ - 2)/sinh(i~ + 2); then 

~ - 2 i l n ( + _ s ~ / ~ 2 ( 2 ~ ) )  ~ =  -+ (A.2) 
t~(2~) = ( - 2 i  ln(s,/12(27) s~/1,(27")) ~ = _+2s, ns 

f 
-- i ln(e , .ps , /3(  2 ~ -- ),~)) ct, fl = + 

?iii?ii?iiiii!i iiiiiiiii!  iii O,a(2~ - 2~) = - . - * c~ = _+2s, ns, fl = +_ 

:** lJ ~ *  /J* I,. • --2k)S,/3(2 j --2~ )) a, f l=  +_2s, ns 

(A.3) 

where the symmetric tensor e~,t~ is defined by e+ _ = e _ 2 + = e + . _ 2 s =  
ez~.2s=e_z+._zs= - 1  and the other e,.p are 1. The e,,a is chosen so that 
O~p(2 " -  2 ~) = 0 when 9~e 2 " =  9~e 2 a. All logarithms in (A.2) and (A.3) are 
chosen such that - r r < 3 m l n z < n .  Each set of (half-) integers {17} 
uniquely specifies a set of roots {27}. Note that the sets contain either 

integers or half-integers, depending on m=. 
For  the sector Q = 0, there is a restriction on the number  m + of the 

form 

m +  =- 2n,,+. + 3 m  _ + 4 m  -2s (A.4) 

4 Note that the factor f,., was not present in the definitions of ref. 21. This amounts to a 
redefinition of the integers U' discussed there. 
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In addition, the total number of roots is 2M [see Eq. (2.4)], so that 

M = m~ + 2m,, s + 3m_2s + 2m _ (A.5) 

For the sector Q =  _+1, we define the number m++,  which has the 
property that m_ - m +  + = 0, + 1. For this sector we have the sum rule 

m + = 2m,,s + m _ + 2m + + + 4m -2s (A.6) 

and since the total number of roots is 2 ( M -  1) [see Eq. (2.4)], we have 

M -  l =m2~+ 2m,,s+ 3m zs+m_ +m++ (A.7) 

The (half-) integers in Eq. (A.1) are not all independent, as the sets 
{/ i  s} and / f }  are completely determined from the sets {/j+} and {/fzs}, 
respectively. The ground state of the ferromagnetic chain consists of a sea 
of 2s-excitations, that is, the integers {i2s} fill a symmetric interval about 
zero, and all other sets of integers are null sets. Therefore, for convenience, 
we take the sets { I f  }, {/f2s}, and {i~,s} to be the independent sets in 
discussing the ferromagnetic case. Those (half-) integers are then freely 
chosen from the intervals 

-�89 +m-2s-al"] U <. +�89 
--~[m_' +m_2s--a(rl)]<~]]-2"<~ +�89 +m 2s--a~ I)] (A.8) 

n s  (2) --�89 +2m_2s+m,,s--alZl]<~I~ <~ +�89 +2m_2~+m,~--a~ ] 

with a fermionic exclusion rule: I~v~IT, for j ~ k .  The numbers a~ and a~ 
depend on the sector in question. For the Q = 0 sector, 

a~"=a'/)=a~Z'=a'~2'=l for Q = 0  (A.9) 

In the Q = _+1 sectors, there are five separate subsectors to be considered, 
depending on the value of m+ + introduced above: 

for m - m + + = + l :  a l ' ) = a ( / ) = 3 ,  a~2)=a~Z)=3 (A.10) 

for m _ - m + + = - l :  a~l)=al~l)=l,  a~2'=a(~Z)=-I (A.11) 

for m _ = m + + = 0 :  a} ' )=a~/)=2,  a12)=a(~2)=l (A.12) 

for m _ = m + + r  a l l ' = 3 ,  atrt)=l, a~21=0, a(~2)=2 (A.13) 

for m _ = m + + r  a~ ' )= l ,  a l / )=3 ,  alZ'=2, a~2~=0 (A.14) 

The last two sectors correspond to two degenerate sets of energy eigen- 
values. 
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The total momentum of each state is determined from Eq. (2.6), and 
can be expressed in terms of {I~} using the logarithmic Bethe equations 
(A.1). Taking the logarithm of Eq. (2.6) and using the definitions (A.2), we 
can write the total momentum as 

m + rtl _ ni-L~ 

P= �89  Z t + ( 2 f ) + � 8 9  E [ t - ( 2 7 ) + 2 n ] + � 8 9  ~ tz,(2~") 
j = l  j = l  j = l  

m - ~ r u n s  

+�89 S t-2s('Z72")+�89 Y. t,,,(,Z;') (mod2=) (A.151 
j=J  j = l  

We sum the logarithmic Bethe equations (A.I) ove r j  and c~. The sum over 
the functions O=p vanishes since they are odd functions. We are left with a 
sum over the integers: 

I 1 "-  1 "a 
P-M2= 12j=l~ I ? + ~ j E  ( I 7 =  +M)+~E I]*= 

I~1 _ ~ ttlns 7 

+i-- E 17 '+ E (mod2 ) (A.16) 
2 j = 1  j = I  

In order to express the momentum in terms of three independent sets of 
integers, we note that for the sector Q = 0, as well as for the sectors corre- 
sponding to Eqs. (A.10)-(A.12), where the (half-) integers are chosen from 
a symmetric interval about zero, the two sets of (half-) integers {I + } and 
{_i2~} fill this interval, and similarly for the sets {/j-} and {- /72s} .  
Therefore, 

hi•  s rtl• 

E If 2.- Z I + = 0  (A.17) 
j = l  j = t  

and the total momentum of a state may be written [using m + - m _  
(mod 2)] as 

P=M~s  j=l ~ /j-2~.+ ~.=,/~sj (mod 27r) (A.18) 

where i f  = 17 + M/2. 
However, for the sectors corresponding to Eqs. (A.13)-(A.14) there is 

an additional term involved, since the integer ranges are not symmetric 
about zero, and "there is an offset between the sets {I + } and { - I~Z '} .  In 
fact, for the sector (A.13) the following relation between the integers 
holds (2'): 

i~s(h, = _ i  + + �89 IT(h' = --I7 2~- �89 (A.19) 
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where the superscript (h) refers to "holes," namely the (half-) integers 
missing from the set {/7}. The number of 2s-holes is m+,  and the number 
of " - " -ho l e s  is m_2s. The ranges of integers are chosen such that 

m ~  m + 

~. I~"+ ~ / ] s ( h ) = o  (a.20) 
j = l  .1=1 

2.v that is, the lj are chosen from a symmetric range. This is not the case for 
the l j ,  which are chosen from the range 

- �89 + m -2.~) ~< 17 ~< � 8 9  + m -2~ - 2)  ( A . 2 1 )  

so that 

m m _ z ~  

I/  + ~ If  'h'= --l(m +m-2,) (A.22) 
j = l  j = l  

Putting Eqs. (A.19)-(A.24) together, we find that for this sector 

. . . . .  )1 p - _ _  Z U I7 -'s+ 17- m,,~+,,, +m_2s (mod 2~) 
M j ~ '= 1 j =  I 

(A.23) 

For the sector corresponding to Eq. (A.14) we have 

I?'"' = - I ?  -~; I~, '"'= - I ;  "-~+ ~ 

E q u a t i o n  (A.20) still holds, but the range of !7 is now such that 

m m _ z~ 

E ( +  E V'"'=~(m +m_2,) 
. i  = l j = I 

Therefore the total momentum in this sector is found to be 

P-~L __2 I; + E ~;-"+ Z ~;"+ . , , , ~ + , , ,  + , , ,  2s 
j l j = l  j = l  

(A.24) 

(A.25) 

(mod 2~) 

(A.26) 
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